Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 174: 245-257, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096959

RESUMO

Recovery of the collagen structure following Achilles tendon rupture is poor, resulting in a high risk for re-ruptures. The loading environment during healing affects the mechanical properties of the tendon, but the relation between loading regime and healing outcome remains unclear. This is partially due to our limited understanding regarding the effects of loading on the micro- and nanostructure of the healing tissue. We addressed this through a combination of synchrotron phase-contrast X-ray microtomography and small-angle X-ray scattering tensor tomography (SASTT) to visualize the 3D organization of microscale fibers and nanoscale fibrils, respectively. The effect of in vivo loading on these structures was characterized in early healing of rat Achilles tendons by comparing full activity with immobilization. Unloading resulted in structural changes that can explain the reported impaired mechanical performance. In particular, unloading led to slower tissue regeneration and maturation, with less and more disorganized collagen, as well as an increased presence of adipose tissue. This study provides the first application of SASTT on soft musculoskeletal tissues and clearly demonstrates its potential to investigate a variety of other collagenous tissues. STATEMENT OF SIGNIFICANCE: Currently our understanding of the mechanobiological effects on the recovery of the structural hierarchical organization of injured Achilles tendons is limited. We provide insight into how loading affects the healing process by using a cutting-edge approach to for the first time characterize the 3D micro- and nanostructure of the regenerating collagen. We uncovered that, during early healing, unloading results in a delayed and more disorganized regeneration of both fibers (microscale) and fibrils (nanoscale), as well as increased presence of adipose tissue. The results set the ground for the development of further specialized protocols for tendon recovery.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Ratos , Animais , Tendão do Calcâneo/diagnóstico por imagem , Colágeno/farmacologia , Cicatrização , Tomografia por Raios X
2.
Acta Biomater ; 168: 264-276, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479155

RESUMO

Tendons are collagen-based connective tissues where the composition, structure and mechanics respond and adapt to the local mechanical environment. Adaptation to prolonged inactivity can result in stiffer tendons that are more prone to injury. However, the complex relation between reduced loading, structure, and mechanical performance is still not fully understood. This study combines mechanical testing with high-resolution synchrotron X-ray imaging, scattering techniques and histology to elucidate how reduced loading affects the structural properties and mechanical response of rat Achilles tendons on multiple length scales. The results show that reduced in vivo loading leads to more crimped and less organized fibers and this structural inhomogeneity could be the reason for the altered mechanical response. Unloading also seems to change the fibril response, possibly by altering the strain partitioning between hierarchical levels, and to reduce cell density. This study elucidates the relation between in vivo loading, the Achilles tendon nano-, meso­structure and mechanical response. The results provide fundamental insights into the mechanoregulatory mechanisms guiding the intricate biomechanics, tissue structural organization, and performance of complex collagen-based tissues. STATEMENT OF SIGNIFICANCE: Achilles tendon properties allow a dynamic interaction between muscles and tendon and influence force transmission during locomotion. Lack of physiological loading can have dramatic effects on tendon structure and mechanical properties. We have combined the use of cutting-edge high-resolution synchrotron techniques with mechanical testing to show how reduced loading affects the tendon on multiple hierarchical levels (from nanoscale up to whole organ) clarifying the relation between structural changes and mechanical performance. Our findings set the first step to address a significant healthcare challenge, such as the design of tailored rehabilitations that take into consideration structural changes after tendon immobilization.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Ratos , Animais , Tendão do Calcâneo/fisiologia , Tecido Conjuntivo/patologia , Traumatismos dos Tendões/patologia , Colágeno , Fibras Musculares Esqueléticas , Fenômenos Biomecânicos
3.
Acta Biomater ; 167: 135-146, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37369267

RESUMO

Bone mineralization involves a complex orchestration of physico-chemical responses from the organism. Despite extensive studies, the detailed mechanisms of mineralization remain to be elucidated. This study aims to characterize bone mineralization using an in-vivo long bone fracture healing model in the rat. The spatio-temporal distribution of relevant elements was correlated to the deposition and maturation of hydroxyapatite and the presence of matrix remodeling compounds (MMP-13). Multi-scale measurements indicated that (i) zinc is required for both the initial mineral deposition and resorption processes during mature mineral remodeling; (ii) Zinc and MMP-13 show similar spatio-temporal trends during early mineralization; (iii) Iron acts locally and in coordination with zinc during mineralization, thus indicating novel evidence of the time-events and inter-play between the elements. These findings improve the understanding of bone mineralization by explaining the link between the different constituents of this process throughout the healing time. STATEMENT OF SIGNIFICANCE: Bone mineralization involves a complex orchestration of physico-chemical responses from the organism, the detailed mechanisms of which remain to be elucidated. This study presents a highly novel multi-scale multi-modal investigation of bone mineralization using bone fracture healing as a model system. We present original characterization of tissue mineralization, where we relate the spatio-temporal distribution of important trace elements to a key matrix remodeling compound (MMP-13), the initial deposition and maturation of hydroxyapatite and further remodeling processes. This is the first time that mineralization has been probed down to the nanometric level, and where key mineralization components have been investigated to achieve a comprehensive and mechanistic understanding of the underlying mineralization processes during bone healing.


Assuntos
Consolidação da Fratura , Minerais , Ratos , Animais , Metaloproteinase 13 da Matriz , Zinco , Hidroxiapatitas
4.
FASEB J ; 37(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37219456

RESUMO

Achilles tendon rupture is a common debilitating medical condition. The healing process is slow and can be affected by heterotopic ossification (HO), which occurs when pathologic bone-like tissue is deposited instead of the soft collagenous tendon tissue. Little is known about the temporal and spatial progression of HO during Achilles tendon healing. In this study we characterize HO deposition, microstructure, and location at different stages of healing in a rat model. We use phase contrast-enhanced synchrotron microtomography, a state-of-the-art technique that allows 3D imaging at high-resolution of soft biological tissues without invasive or time-consuming sample preparation. The results increase our understanding of HO deposition, from the early inflammatory phase of tendon healing, by showing that the deposition is initiated as early as one week after injury in the distal stump and mostly growing on preinjury HO deposits. Later, more deposits form first in the stumps and then all over the tendon callus, merging into large, calcified structures, which occupy up to 10% of the tendon volume. The HOs were characterized by a looser connective trabecular-like structure and a proteoglycan-rich matrix containing chondrocyte-like cells with lacunae. The study shows the potential of 3D imaging at high-resolution by phase-contrast tomography to better understand ossification in healing tendons.


Assuntos
Tendão do Calcâneo , Ossificação Heterotópica , Animais , Ratos , Cicatrização , Osteogênese , Osso e Ossos
5.
J Struct Biol X ; 7: 100087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938139

RESUMO

Heterotopic mineralization entails pathological mineral formation inside soft tissues. In human tendons mineralization is often associated with tendinopathies, tendon weakness and pain. In Achilles tendons, mineralization is considered to occur through heterotopic ossification (HO) primarily in response to tendon pathologies. However, refined details regarding HO deposition and microstructure are unknown. In this study, we characterize HO in intact rat Achilles tendons through high-resolution phase contrast enhanced synchrotron X-ray tomography. Furthermore, we test the potential of studying local tissue injury by needling intact Achilles tendons and the relation between tissue microdamage and HO. The results show that HO occurs in all intact Achilles tendons at 16 weeks of age. HO deposits are characterized by an elongated ellipsoidal shape and by a fiber-like internal structure which suggests that some collagen fibers have mineralized. The data indicates that deposition along fibers initiates in the pericellular area, and propagates into the intercellular area. Within HO deposits cells are larger and more rounded compared to tenocytes between unmineralized fibers, which are fewer and elongated. The results also indicate that multiple HO deposits may merge into bigger structures with time by accession along unmineralized fibers. Furthermore, the presence of unmineralized regions within the deposits may indicate that HOs are not only growing, but mineral resorption may also occur. Additionally, phase contrast synchrotron X-ray tomography allowed to distinguish microdamage at the fiber level in response to needling. The needle injury protocol could in the future enable to elucidate the relation between local inflammation, microdamage, and HO deposition.

6.
Matrix Biol ; 115: 32-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435426

RESUMO

The specific viscoelastic mechanical properties of Achilles tendons are highly dependent on the structural characteristics of collagen at and between all hierarchical levels. Research has been conducted on the deformation mechanisms of positional tendons and single fibrils, but knowledge about the coupling between the whole tendon and nanoscale deformation mechanisms of more commonly injured energy-storing tendons, such as Achilles tendons, remains sparse. By exploiting the highly periodic arrangement of tendons at the nanoscale, in situ loading of rat Achilles tendons during small-angle X-ray scattering acquisition was used to investigate the collagen structural response during load to rupture, cyclic loading and stress relaxation. The fibril strain was substantially lower than the applied tissue strain. The fibrils strained linearly in the elastic region of the tissue, but also exhibited viscoelastic properties, such as an increased stretchability and recovery during cyclic loading and fibril strain relaxation during tissue stress relaxation. We demonstrate that the changes in the width of the collagen reflections could be attributed to strain heterogeneity and not changes in size of the coherently diffracting domains. Fibril strain heterogeneity increased with applied loads and after the toe region, fibrils also became increasingly disordered. Additionally, a thorough evaluation of radiation damage was performed. In conclusion, this study clearly displays the simultaneous structural response and adaption of the collagen fibrils to the applied tissue loads and provide novel information about the transition of loads between length scales in the Achilles tendon.


Assuntos
Tendão do Calcâneo , Ratos , Animais , Tendão do Calcâneo/fisiologia , Fenômenos Biomecânicos , Colágeno/química , Matriz Extracelular
7.
Sci Rep ; 11(1): 17313, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453067

RESUMO

Achilles tendons are mechanosensitive, and their complex hierarchical structure is in part the result of the mechanical stimulation conveyed by the muscles. To fully understand how their microstructure responds to mechanical loading a non-invasive approach for 3D high resolution imaging suitable for soft tissue is required. Here we propose a protocol that can capture the complex 3D organization of the Achilles tendon microstructure, using phase-contrast enhanced synchrotron micro-tomography (SR-PhC-µCT). We investigate the effects that sample preparation and imaging conditions have on the resulting image quality, by considering four types of sample preparations and two imaging setups (sub-micrometric and micrometric final pixel sizes). The image quality is assessed using four quantitative parameters. The results show that for studying tendon collagen fibers, conventional invasive sample preparations such as fixation and embedding are not necessary or advantageous. Instead, fresh frozen samples result in high-quality images that capture the complex 3D organization of tendon fibers in conditions as close as possible to natural. The comprehensive nature of this innovative study by SR-PhC-µCT breaks ground for future studies of soft complex biological tissue in 3D with high resolution in close to natural conditions, which could be further used for in situ characterization of how soft tissue responds to mechanical stimuli on a microscopic level.


Assuntos
Tendão do Calcâneo/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Animais , Melhoramento Biomédico , Feminino , Imageamento Tridimensional , Microscopia de Contraste de Fase , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Síncrotrons
8.
Adv Sci (Weinh) ; 7(21): 2002524, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33173750

RESUMO

Long bone mineralization occurs through endochondral ossification, where a cartilage template mineralizes into bone-like tissue with a hierarchical organization from the whole bone-scale down to sub-nano scale. Whereas this process has been extensively studied at the larger length scales, it remains unexplored at some of the smaller length scales. In this study, the changes in morphology, composition, and structure during embryonic mineralization of murine humeri are investigated using a range of high-resolution synchrotron-based imaging techniques at several length scales. With micro- and nanometer spatial resolution, the deposition of elements and the shaping of mineral platelets are followed. Rapid mineralization of the humeri occurs over approximately four days, where mineral to matrix ratio and calcium content in the most mineralized zone reach adult values shortly before birth. Interestingly, zinc is consistently found to be localized at the sites of ongoing new mineralization. The mineral platelets in the most recently mineralized regions are thicker, longer, narrower, and less aligned compared to those further into the mineralized region. In summary, this study demonstrates a specific spatial distribution of zinc, with highest concentration where new mineral is being deposited and that the newly formed mineral platelets undergo slight reshaping and reorganization during embryonic development.

9.
Acta Biomater ; 116: 391-399, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937205

RESUMO

A better understanding of bone nanostructure around the bone-implant interface is essential to improve longevity of clinical implants and decrease failure risks. This study investigates the spatio-temporal evolution of mineral crystal thickness and plate orientation in newly formed bone around the surface of a metallic implant. Standardized coin-shaped titanium implants designed with a bone chamber were inserted into rabbit tibiae for 7 and 13 weeks. Scanning measurements with micro-focused small-angle X-ray scattering (SAXS) were carried out on newly formed bone close to the implant and in control mature cortical bone. Mineral crystals were thinner close to the implant (1.8 ± 0.45 nm at 7 weeks and 2.4 ± 0.57 nm at 13 weeks) than in the control mature bone tissue (2.5 ± 0.21 nm at 7 weeks and 2.8 ± 0.35 nm at 13 weeks), with increasing thickness over healing time (+30 % in 6 weeks). These results are explained by younger bone close to the implant, which matures during osseointegration. Thinner mineral crystals parallel to the implant surface within the first 100 µm indicate that the implant affects the ultrastructure of neighbouring bone , potentially due to heterogeneous interfacial stresses, and suggest a longer maturation process of bone tissue and difficulty in binding to the metal. The bone growth kinetics within the bone chamber was derived from the spatio-temporal evolution of bone tissue's nanostructure, coupled with microtomographic imaging. The findings indicate that understanding mineral crystal thickness or plate orientation can improve our knowledge of osseointegration.


Assuntos
Interface Osso-Implante , Implantes Dentários , Animais , Durapatita , Osseointegração , Coelhos , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Titânio , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...